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ABSTRACT

Context. Amongst the different features and boundaries encountered around comets, one remains of particular interest to the plasma
community: the diamagnetic cavity. Crossed for the first time at 1P/Halley during the Giotto flyby in 1986 and later met more than
700 times by the ESA Rosetta spacecraft around Comet 67P/Churyumov-Gerasimenko, this region, almost free of any magnetic field,
surrounds nuclei of active comets. However, previous observations and modelling of this part of the coma have not yet provided a
definitive answer as to the origin of such a cavity and on its border, the diamagnetic cavity boundary layer.
Aims. We investigate which forces and equilibrium might be at play and balance the magnetic pressure at this boundary down to the
spatial and temporal scales of the electrons in the 1D collisionless case. In addition, we scrutinise assumptions made in magneto-
hydrodynamic and hybrid simulations of this environment and check for their validity.
Methods. We simulated this region at the electron scale by means of 1D3V particle-in-cell simulations and SMILEI code.
Results. Across this layer, depending on the magnetic field strength, the electric field is governed by different equilibria, with a thin
double-layer forming ahead. In addition, we show that the electron distribution function departs from Maxwellian and/or gyrotropic
distributions and that electrons do not behave adiabatically. We demonstrate the need to investigate this region at the electron scale in
depth with fully kinetic simulations.

Key words. comets: general – plasmas – magnetic fields

1. Introduction

Comets are a formidable laboratory for plasma experiments.
As the surface of the nucleus is heated by solar radiation, the
ices sublimate, turning into a gas that flows away from the
nucleus at several hundred m s−1. This gas, in turn, is ionised
by the extreme ultraviolet solar radiation and accelerated solar
wind electrons such that an ionosphere forms directly from the
surface. This cloud of cometary ions and electrons will then
interact with the ambient interplanetary plasma, mainly made
of protons and electrons, carrying a convective electric field.
However, as comets have very elliptical or hyperbolic trajecto-
ries, they may go through different stages: as they get closer
to the Sun, the outgassing activity increases as well as pho-
toionisation, and therefore the cometary ionosphere becomes
denser. Noteworthily, within the cometary ionosphere, a partic-
ular region forms around the nucleus that is characterised by an
extremely low ambient magnetic field, lower than 1 nT, named
the diamagnetic cavity.

A cometary diamagnetic cavity was observed for the first
time on 13 and 14 March 1986 (Neubauer et al. 1986) during the
Giotto flyby (Reinhard 1986). As Giotto got closer to the nucleus,
the magnetic field strength slowly increased and then abruptly
dropped to almost zero for 2 min at around 4600 km from the

⋆Movies associated to Figs 7, 10, and 11 are only available at
https://www.aanda.org

nucleus (Neubauer 1987). The surface that encased the cavity
was named the ‘contact surface’. In the literature, this boundary
was also referred to as the ‘ionopause’ (Ma et al. 2008). Cravens
(1986) ruled out the use of the latter term as in the case of Venus,
this was defined as the boundary where the magnetic pressure
balances the thermal plasma pressure which might not be the
case at 1P/Halley. The contact surface is also commonly referred
to as the cavity boundary or simply the boundary (e.g. Goetz
et al. 2016b,a; Gunell et al. 2017). A more appropriate name in
light of the results presented here and used by Israelevich et al.
(2003) is the term diamagnetic cavity boundary layer (DCBL).
Throughout this paper, we use the latter. The origin of the dia-
magnetic cavity and the balance at play at the DCBL are still
debated. At the time, a possible explanation brought by Cravens
(1987) and Ip & Axford (1987) was that the magnetic pressure
was counterbalanced by the ion neutral drag, that is to say, the
force applied by the neutral on the plasma (mainly ions) by
means of ion-neutral collisions as they move at different veloc-
ities. However, the calculation relied on assumptions about the
geometry of the cavity which is difficult to gauge with single
spacecraft observations: (i) the ion speed is close to zero at the
boundary and outwards, or (ii) the cometary plasma is at pho-
tochemical equilibrium. To be applicable, this balance at the
boundary requires that (Cravens 1986):

−∇

(
B2

2µ0

)
· (V − Un) > 0, (1)
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where V stands for the mean plasma velocity and Un for that of
the neutrals, showing that the equilibrium may not hold if ions
travel faster than the neutrals along the gradient direction of the
magnetic pressure.

Almost 30 years later, from 2014 to 2016, the Rosetta mis-
sion (Glassmeier et al. 2007a) orbiting around Comet 67P/
Churyumov-Gerasimenko (Churyumov & Gerasimenko 1972)
provided a unique opportunity to explore the plasma environ-
ment of a comet over an extended period of time and follow its
evolution. The findings were a heliocentric distance from 1.24 au
(perihelion) to 3.8 au (end of mission) and an outgassing rate
from 1025 s−1 to slightly below 1029 s−1 (Simon Wedlund et al.
2019, 2020). Thanks to its onboard magnetometer (RPC-MAG,
Glassmeier et al. 2007b), a diamagnetic cavity was also observed
but this time over an extended period, as Rosetta, unlike Giotto,
was not a flyby mission. In the middle of its escort phase, Rosetta
crossed the DCBL multiple times from April 2015 to February
2016 (Goetz et al. 2016a; Götz 2019), and went in and out of the
cavity more than 600 times for short periods of time (from sev-
eral tens of seconds to tens of minutes). However, Rosetta was an
extremely slow spacecraft, not exceeding a few m s−1 except dur-
ing manoeuvres and excursions, meaning that the DCBL was a
moving boundary likely behaving like ebb and flow passing over
the immobile spacecraft: the origin of this behaviour is unknown
and the behaviour itself is not yet clearly understood. Finally,
crossings occurred at much closer distances from the nucleus
than at 1P, namely at between 50 and 400 km, clearly linked
to different outgassing rates and heliocentric distances. Never-
theless, these crossings occurred farther out than anticipated by
models (Rubin et al. 2012; Koenders et al. 2015).

Plasma modelling and experiments are required in order
to understand this boundary and the birth of the diamagnetic
cavity. Three different modelling approaches exist in the case
of comets: magnetohydrodynamics (MHD), hybrid, and fully
kinetic particle-in-cell (PIC). MHD models have the ability to
model large-scale structures – especially at large outgassing rates
(≳1027 s−1) – and the interaction between the cometary iono-
sphere and the Solar wind, for instance. However, ions and
electrons are both treated as fluids, and ion gyroradius scales
cannot be resolved in MHD. Additional assumptions are made
regarding the electron pressure, the generalised Ohm’s law, and
the treatment of Maxwell’s equations (e.g. assuming plasma
quasi-neutrality and neglecting the displacement current in the
low-frequency limit). Although MHD models in general do
exhibit a diamagnetic cavity around the comet nucleus and seem
to agree with single-spacecraft observations (e.g. see Rubin et al.
2014; Huang et al. 2016, 2018) with similar sizes, the origin and
equilibrium at play at the DCBL are still not understood. For
example, Maxwell’s equations are not self-consistently solved
and the inclusion of the Hall term in the Maxwell-Faraday
(induction) equation may lead to very different geometries or
sizes of the diamagnetic cavity (Huang et al. 2018). Indeed, this
determines whether the magnetic field is frozen-in with the ions
or the electrons. Moreover, some of these models might ignore
ion-neutral chemistry whereas in situ observations have shown
that the latter is significant in particular near perihelion (Beth
et al. 2020) when diamagnetic cavity crossings are more likely
to be observed. Finally, the spatial discretisation of the domain
introduces a numerical resistivity and therefore a numerical dif-
fusion of the magnetic field which prevents reliable studies in a
quasi-collisionless case.

Hybrid models still treat electrons as a fluid while ions are
treated as clouds of macro-particles with their own probabilis-
tic weight. The ion velocity is updated and pushed in time

using the fundamental relation of the dynamics, which may
include a Langevin term to reproduce the ion-neutral drag (e.g.
Puhl-Quinn & Cravens 1995). This corresponds to a continuous
treatment of the collisions. As the number of neutral molecules
is much larger than that of ions, during each time step, there
are enough collisions with the neutrals that the total transfer of
momentum can be modelled as an average friction force. This
approximation can hold only if the cell size is much larger than
the mean free path of the ions. There are also hybrid models that
treat the collisions with a probabilistic approach (e.g. Koenders
et al. 2015; Simon Wedlund et al. 2017; Alho et al. 2019).

It is only recently that full-PIC simulations have been car-
ried out at comets in a very limited case for an outgassing rate of
1025 s−1 where collisions may be negligible. Indeed, in contrast
to hybrid and MHD models, PIC models are designed to primar-
ily simulate collisionless plasmas (driven by the Klimontovich
equation) and solve electromagnetic fields self-consistently.
Deca et al. (2017) performed a four-species (cometary ions and
electrons, solar-wind protons and electrons) simulation of 67P
for the conditions met at ∼3 au with iPIC3D (Markidis et al.
2010), including an implicit numerical scheme (Mason 1981;
Brackbill & Forslund 1982). Indeed, implicit schemes allevi-
ate constraints present in explicit PIC models: observing the
Courant-Friedrich-Levy (CFL, Courant et al. 1928) condition
(c∆t ≤ ∆x) and preventing the so-called grid instability (∆x ≲
λe,De, Hockney & Eastwood 1988; Birdsall & Langdon 2004).
Implicit PIC models allow us to model larger spatial scales with
larger time-steps (Deca et al. 2017). However, the fluctuations of
the electric field might be damped as the fast motion of the elec-
trons is not resolved as it is in iPIC3D (Markidis et al. 2010).
Nevertheless, these models are valuable in that they provide
details of the complex interaction between the Solar wind and
the cometary ionosphere in the collisionless regime. In particu-
lar, they contribute to the understanding of the energisation of
the solar wind electrons that dive towards the comet nucleus (see
Galand et al. 2020). Although PIC simulations allow us to access
the physics at smaller scales, the main drawback is that only
a few include collisions by means of a Monte-Carlo approach
(so-called PIC-MMC). This should be kept in mind as observa-
tions point out that plasma boundaries are correlated with the ion
exobase (Mandt et al. 2016) or the electron exobase regarding the
DCBL (Henri et al. 2017).

Prior to the Giotto flyby, active experiments in space were
performed in order to simulate how a plasma cloud expands
into a magnetised environment, providing insight into how the
cometary plasma interacts with the Solar wind. These exper-
iments are known as AMPTE artificial comet experiments
(Active Magnetospheric Particle Tracer Explorers Valenzuela
et al. 1986) and originate from an idea put forward by
Biermann et al. (1961). They consist in the release of pri-
marily a barium cloud into the Solar wind with the outcome
being probed in situ during the release. Lühr et al. (1986b) and
Haerendel et al. (1986) focused on respectively the magnetic
field observations and the plasma dynamics. A similar experi-
ment was set later with lithium (Lühr et al. 1986a). During both
releases, a diamagnetic cavity was formed around the cloud.
However, it could not be maintained as ions were not replen-
ished as they are at comets through ionisation of the continuously
outward-expanding neutrals.

In recent years, other experiments have been performed to
simulate diamagnetic cavities in the laboratory (e.g. Bonde et al.
2015, 2018). In these experiments, a plasma was produced by a
laser pulse hitting a target, and a diamagnetic cavity formed as
the plasma expanded in the surrounding magnetic field.
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Although there are many approaches and attempts to tackle
the origin of the diamagnetic cavity, little is known and its ori-
gin is still debated. However, no fully kinetic simulation had
ever been employed to investigate its formation until now. This
paper is the first reported attempt to use a PIC simulation in such
a case. This method allows us to look at physical phenomena
down to the electron scale and the electron velocity distribution
function, that is, the behaviour of electrons at the kinetic scales
through this transition region. The paper is organised as follows.
In Sect. 2, we describe the numerical model used for the simula-
tions as well as the setup. In Sect. 3, we present the results from
the simulations such as electromagnetic fields, thermodynamics
variables, and distribution functions, followed by a discussion
focusing on the properties of the electrons through the DCBL in
Sect. 4. Finally, we summarise our findings and propose future
investigations in Sect. 5.

2. Method

2.1. Formalism

In this work, we simulate the DCBL using the PIC method. In
this section, we review the basics of the method and its relation
to the kinetic and fluid theory of plasmas that we use in our anal-
ysis. PIC simulations represent the plasma by a finite number
of macro particles (so-called Klimontovich-Dupree representa-
tion) and solve the Klimontovich equation (Klimontovich 1958;
Dupree 1963). In this representation, the velocity distribution
function fs of the species s is discrete and given by:

fs(r, u, t) =
N∑

j=1

W jδr(r − r j(t))δu(u − u j(t)), (2)

where N is the number of macroparticles in the simulation, r j(t)
is the position of the macroparticle j at time t, u j(t) is its veloc-
ity, and W j is its associated weight. However, numerically, due
to space discretisation, the Dirac function in space δ(r − ri(t))
should be replaced by a shape function ‘S ’ which deposits the
charge and the current of the macro-particle onto spatial grid
points.

For plasmas, in the limit when the plasma parameter Λ =
4π neλ

3
D is large enough (i.e. a weakly coupled and uncorre-

lated plasma, with no pair interactions between particles), the
distribution function becomes the solution of the Vlasov equa-
tion as the sources and losses have been ignored, which gives
a continuous description of the plasma in space and velocity
such that:

∂t fs = −u · ∇r fs −
qs

ms
(E + u × B) · ∇u fs, (3)

with the electric E and magnetic B fields solutions of Maxwell’s
equations:

∇r · E = q
ni − ne

ε0
∇r · B = 0
∂t B = −∇r × E
∂t E = c2∇r × B − µ0c2(qniVi︸︷︷︸

J i

−qneVe︸  ︷︷  ︸
Je

),
(4)

where ni (ne) stands for the total ion (electron) number density,
Vi (Ve) stands for the mean ion (electron) bulk velocity, and J i
(Je). stands for the mean ion (electron) current. Each quantity is
a function of space and time.

Due to the finite number of particles, it is not possible to
obtain a continuous description of fs in phase space. Never-
theless, fs has moments, solutions of the different equations in
MHD, and hybrid simulations in the limit of a large plasma
parameter (Λ ≫ 1) to limit the correlation between particles.
Fluid equations are not solved in a PIC simulation, but fluid
quantities derived from the moments of the velocity distribution
function (VDF) can be of interest when analysing the results,
as we show in Sect. 3. For instance, the continuity equation for
species s in the absence of source and loss is as follows:

∂tns = −∇ · (nsV s), (5)

and the momentum equation is:

ms∂t(nsV s) = − ∇ ·

dynamic pressure tensor Ps,dyn︷            ︸︸            ︷
(msnsV s ⊗ V s)

− ∇ · Ps,th︸︷︷︸
thermal pressure tensor

+ qsns(E + V s × B)︸                ︷︷                ︸
Lorentz force

, (6)

which can both be written in conservation form. By adding both
momentum equations from the ions (index i) and the electrons
(index e), we end up with:

mi∂t(niVi) + me∂t(neVe) + ε0∂t(E × B) =
− ∇ · Pi,dyn − ∇ · Pe,dyn − ∇ · Pi,th − ∇ · Pe,th + ∇ · σ, (7)

where

σ = ε0E ⊗ E +
B ⊗ B
µ0

−

(
ε0E2

2
+

B2

2µ0

)
I3, (8)

is the Maxwell stress tensor (a matrix), Pi,th (Pe,th) is the ion
(electron) thermal pressure tensor, and I3 is the identity matrix.
In the MHD limit, the energy stored in the electric field is negli-
gible compared to the magnetic energy (i.e. c2E2 ≪ B2). Finally,
when the electrons are assumed massless, the electric field can
be derived explicitly through the electron momentum equation,
the so-called generalised Ohm’s law given by:

E ≈ −
∇ · Pe,th

qne
− Ve × B. (9)

Equation (9) will be scrutinised and verified in the context of
our simulation in Sect. 3.3. As the simulation is performed in 1D
along x, Maxwell’s equations can be simplified as follows:

∂xEx =
q(ni − ne)
ε0

∂xBx = 0

∂tBy = +∂xEz ∂tBz = −∂xEy

∂tEx = −µ0c2Jx
∂tEy = −µ0c2Jy − c2∂xBz ∂tEz = −µ0c2Jz + c2∂xBy.

(10)

This set of equations, alongside the generalised Ohm’s law,
is important to keep in mind in order to interpret our results
presented in Sect. 3. Finally, a word of caution: as sources and
losses have been ignored in particular in the continuity equa-
tion of both species, it is impossible to reach equilibrium, as this
would mean that nsV s · ex = constant, as the simulation is per-
formed in one spatial dimension. As the initial number density
is imposed and decreasing as a function of x, steady state would
require V s · ex ∝ 1/ns. In addition, the simulation time cannot be
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too long because, in the real world, ions and electrons are contin-
uously produced through photoionisation and electron-impact,
and therefore the initial reservoir of ions and electrons would be
replaced and refurnished with these newborn ions and electrons,
which is not taken into account here.

2.2. Setup and initial conditions

The PIC simulations were carried out with SMILEI, an explicit
and Cartesian high-performance open-source code designed to
simulate various plasma physics situations, from astrophysics
to relativistic laser–plasma interactions (Derouillat et al. 2018).
The simulation is setup in 1D3V configuration: thermodynamic
quantities only depend on the spatial direction x while parti-
cles in the velocity phase space may still evolve in the three
directions in velocity space. Firstly, as an explicit scheme, the
simulation time-step should be small enough to prevent light
waves from propagating more than one cell at any given time (the
so-called Courant-Friedrichs-Lewy condition), that is, c∆t ≤ ∆x
for a strict stability. However, in practice, it may be neces-
sary to restrain them (c∆t < ∆x). Secondly, in order to prevent
numerical heating, the grid resolution∆x should resolve the elec-

tron Debye length λe,De =
√
ε0kBTe

q2ne
(∆x < λe,De). The SMILEI

unit of length is the electron skin depth Le,sd = c/ωpe so that

λe,De/Le,sd =

√
kBTe
mec2 . As our investigations are in the frame of

classical physics and ‘cold’ plasmas, we need kBTe ≪ mec2.
Nevertheless, we cannot use realistic electron temperatures of
the order of a few tens of eVs. Indeed, we have the hierarchical
relation:

no instability︷      ︸︸      ︷
c∆t ≤ ∆x︸     ︷︷     ︸

CFL

≤ λe,De ≪ Le,sd︸         ︷︷         ︸
kBTe≪mec2

≪ Ncell∆x, (11)

and

ωpe∆t ≤

√
kBTe

mec2 .

The initial temperature of the plasma constrains the time-step
and the total run time of the simulations. Therefore, trade-offs
must be made. For our simulations, we initialise the electrons
with a thermal energy of kBTe = 0.01mec2. This value appears
relatively large compared with the reality (around kBTe ≈ 10 eV)
but according to Eq. (11), applying a realistic electron tempera-
ture is unfeasible because of limited computational resources.
Indeed, reducing the temperature would require reducing both
∆x and ∆t, drastically increasing the runtime for simulating the
same spatial and temporal domain. In addition, as discussed in
Sect. 4, fluctuations of the electric field in the unmagnetised field
would be theoretically larger for lower Debye lengths if the num-
ber of particles per cell were kept constant between simulations.
Moreover, it should be noted that because the initial number den-
sity is not uniform along x, ωpe and λe,De are not either. However,
the inputs are defined with respect to the highest plasma num-
ber density n0 = ni(0, 0) meaning that ωpe(x, 0) < ωpe(0, 0) and
λe,De(0, 0) < λe,De(x, 0) ensuring stability and no numerical heat-
ing. For our simulations, we chose n0 = 109 m−3 which is typical
of ion densities observed around perihelion during diamagnetic
cavity crossings (Henri et al. 2017; Hajra et al. 2018). Here, n0
corresponds to the plasma number density on the left side of the
simulation box (x = 0). Nevertheless, at the DCBL (x = Lbox/2),

the number density is close to n0 exp(−2) ≈ 0.13n0, which is one
order of magnitude less than observations.

To perform a fully kinetic simulation, two additional ingre-
dients are required: a spatial grid and a particle pusher. We used
the default grid in SMILEI, the Yee grid (Yee 1966), which is
the only one available for 1D geometry. Regarding the particle
pusher, several options are available in SMILEI. All have their
pros and cons. To be accurate, a pusher should be ultimately
symplectic. At the moment, none of the pushers provided by
Boris, Vay, or Higuera and Cary – that are available in SMILEI
– (Boris & Shanny 1970; Vay 2008; Higuera & Cary 2017) have
this property. Each scheme may introduce errors at different
levels (Ripperda et al. 2018). For this simulation, we chose the
pusher of Higuera and Cary.

Finally, the simulation needs appropriate initial and bound-
ary conditions both for the species and electromagnetic fields.
For the ions and electrons, we start from an initial profile
decreasing exponentially along x. Although at comets, ion and
electron number densities should decrease as 1/r where r is the
cometocentric distance (Gombosi 2015; Beth et al. 2019), this
holds only for a spherical symmetry. Here, the simulation is per-
formed in Cartesian geometry along x and therefore it is not
perfectly representative of a comet. The choice of an exponen-
tial profile has one purpose and benefit: as we initialise with a
constant electron temperature Te, in regions where the magnetic
field is constant, the electric field is purely ambipolar such that
Ex ≈ (kBTe/q)∂xne/ne. If the electron number density ne follows
an exponential law, Ex is almost constant. This is very helpful
because it can be easily estimated from inputs and should be
constant through the simulation box. At the boundaries, we do
not inject ions. However, for the lower bound (x = 0, closer to the
comet), ions and electrons are reflected and thermalised while for
the upper bound they are purely lost. Regarding electromagnetic
forces, the best choice seems to be Silver-Müller boundary con-
ditions (Barucq & Hanouzet 1997) to prevent trapping of waves
(especially light waves) within the box.

3. Results

We set up a 1D3V PIC simulation of the DCBL. The spatial
dimension is denoted by x, and the x axis crosses the DCBL.
The left-hand side (x = 0) is located inside the diamagnetic cav-
ity, and the right-hand side in plasma surrounding the cavity.
The simulated region is initialised with a plasma whose den-
sity decreases with increasing x and which is unmagnetised for
low x values and magnetised for high ones. The time-step is
0.081ω−1

e,0 ≈ 4.54 × 10−8 s where ωpe,0 corresponds to the high-
est plasma frequency met at the start of the simulation (i.e. at
x = 0). We run the simulation over more than 750 000 time-
steps which corresponds to ∼0.035 s of real time. Values of the
electromagnetic fields (E, B) and of the thermodynamic quanti-
ties (number density n, current J, thermal pressure tensor P of
both species, ions and electrons) have been recorded every 100
time-steps as the PIC simulation uses a substantial amount of
memory. The initialisation of the simulation is summarised in
Table 1 and Fig. 1. One word should be said regarding the mag-
netic field profile. Although the shape was enforced, several tests
were made on the most suitable HB. Interestingly, steeper values
(i.e. ≲400LDe,0) generated large amplitude waves in the electro-
magnetic fields towards the unmagnetised region. In addition, if
too steep, the magnetic profile relaxes quickly towards a gen-
tler profile with a scale height close to HB. In that respect, we
initialise the simulation directly to this stabler value. Moreover,
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Table 1. Simulation setup.

Parameters Values Simulation units More physical units

n0 109 [m−3]
kBTe 0.01 [mec2] ∼5.11 keV
vi 10−4 [c] ∼30 km s−1

mi 10 000 [me] ∼5.5 Da

ωpe,0

√
q2n0

meε0
≈ 1.78 × 106 [s−1]

L0 c/ωpe,0 [m] ∼168 m

Le,De,0

√
ε0kBTe

q2n0
= 0.1L0 [m] ∼16.8 m

∆x 0.9Le,De,0 [m] ∼15.1 m
∆t 0.9∆x/c = 0.081ω−1

pe,0 [s] ∼45 ns
Ncell 215 = 32 768 cells
Nppc 2048 particles per cell per species
Np 227 ≈ 1.34 × 108 simulation particles

Lbox Ncell∆x [m] ∼495 km
Hn 0.25Lbox [m] ∼124 km
ni(x, t = 0) exp(−x/Hn) [n0]
B0 0.1

[ √
µ0n0mec2

]
∼1014 nT

HB 400LDe,0 [m] ∼6.7 km

Bz(x, t = 0) 0.5
[
1 + tanh

(
x − 0.5Lbox

HB

)]
[B0]

Fig. 1. Initial setup and profiles for ions, electrons, and magnetic field
in our simulation box. Ion temperature is not indicated as it is set
to 0.

around the DCBL as indicated in Fig. 1, HB corresponds to 140
local LDe (the Debye length increases with x as ne decreases and
Te is constant at the onset) and 14c/ωp,e. This is of the order of
the value suggested by Grad (1961). Although unknown at that
time, Grad (1961) analytically explored a DCBL-like configura-
tion of the plasma and magnetic field and estimated the ‘thinnest’
possible magnetic field profile. He found that the minimal width
should be around ∼8c/ωp,e.

3.1. Energy density of electromagnetic fields EEE and BBB

Figure 2 shows the evolution over time of the energy stored in
the different components of the electric field during the sim-
ulation in SMILEI units (here n0mec2). We also over-plotted
the different speeds of interest in the case where waves are
present: the speed of light (c), the thermal speed of the electrons
(
√

kBTe/me ≈ 0.1c), and the ion acoustic speed (
√

kBTe/mi ≈

0.001c). The ion initial speed (10−4c) is not displayed as it would
be almost vertical. Distinct features may be seen in the dif-
ferent components. In the top panel (ε0E2

x), there is a layer of
disturbance on the left side (x ≈ 0) associated with box bound-
ary effects. For the left side, we chose a boundary that reflects
ions and electrons with the initial speed and temperature set
at the beginning of the simulation. Interestingly, the boundary
moves at different speeds during the simulation. The boundary
appears around 0.003 s, moving at around the electron ther-
mal speed, and then at ∼0.005 s the boundary slows down and
moves roughly at the ion acoustic speed. Another perturbation
is propagating inwards from the right side of the box (x ≈ Lbox).
Although we set a Silver-Mueller boundary condition, particles
are removed there. As electrons are propagating and leaving
the box faster than the ions, an electric field is set to remove
the ions at the same speed as the electrons. The characteristic
speed of the perturbation is not identified as it is between the ion
acoustic speed and the electron thermal speed. As long as both
perturbations remain far from the diamagnetic cavity boundary
layer, initialised around x ∼ 200−300 km, it should not affect our
results.

Regarding ε0E2
x , perturbations are only associated with the

current along x such that:

∂tε0E2
x = −2JxEx, (12)
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c

vth,e

vth,i

Fig. 2. Colour plot (position vs. time) of the energy stored in the dif-
ferent electric field components. As an indication, lines with squares
represent the propagation of structures at different speeds. From the
most horizontal line to the most vertical one (with squares): speed of
light in vacuum, thermal speed of the electrons

√
kBTe/me, and ion

acoustic speed
√

kBTe/mi. The vertical line with circles is located at
0.5 Lbox, where Bz is originally B0/2. The colour bar is in logscale (dif-
ferent for each plot) and SMILEI units (here n0mec2).

Fig. 3. Two-dimensional FFT of Ey between 227 and 257 km (left panel,
DCBL location) and between 348 and 408 km (right panel, magnetised
part), both between 0 and 0.005 s. Sampling rates are ∆x in space and
100∆t in time. For the right panel, as we are in the magnetised part, the
pulsation is given in terms of electron cyclotron pulsation.

where Jx is the plasma current along x. Away from the DCBL
where the magnetic field can be assumed constant, we see that
the fluctuations of E2

x are on average smaller in the magnetised
part (Bz(x) ≈ B0) than in the unmagnetised one (Bz(x) ≈ 0). The
mean electric field in both parts, magnetised and unmagnetised
alike, is the ambipolar field, of the same value. However, as ions
and electrons are magnetised, this prevents or limits any spuri-
ous current Jx that drives the fluctuations. The largest values and
fluctuations of E2

x are observed near the DCBL and within the
unmagnetised part. The DCBL grows larger over time but this
becomes clearer in E2

y which is discussed below. The flanks move
away from the initial position of the boundary faster than the ion
acoustic speed (vth,i ≈

√
kBTe/mi = 10−3c) but slower than the

electron thermal speed (vth,i ≈
√

kBTe/mi = 0.1c). Further inves-
tigations showed that the DCBL grows larger at a speed closer
to the local Alfvén speed. Within the layer, Ex is equal to almost
zero because of a diamagnetic current; this is discussed in detail
in Sect. 4.

The variations seen in the middle panel of Fig. 2 are of par-
ticular interest. At the beginning of the simulation, we observe
the propagation of light waves from the left side of the simu-
lation box which are absorbed by the right side, more likely as
boundary effects. However, from 0.001 s to 0.005 s, light waves
start from the boundary. The presence of large fluctuations of E2

y
highlights the fact that our initial magnetic profile is not in equi-
librium. Indeed, the temporal variations of E2

y are entangled with
those of B2

z such that:

∂t(ε0E2
y + B2

z/µ0) = −2JyEy − 2ε0c2∂xEyBz. (13)

At the beginning of the simulation and until 0.005 s, the
fluctuations are located at the DCBL, more towards the unmag-
netised side. After 0.005 s, the DCBL starts to form and the
fluctuations split into two components, one along each flank.
These components appear to differ in nature as they have differ-
ent characteristics, such as timescale. However, this is perhaps
biased by the fact that the sampling rate of the field is lower
than the typical frequency (e.g. the plasma frequency) and there-
fore the perceived frequencies are aliased (i.e. modified by the
sampling rate; we do not comply with the Nyquist–Shannon
sampling theorem as we are limited by data storage) and inac-
curate. In order to identify or understand the nature of these
waves, we perform a fast Fourier transform (FFT). Figure 3
shows a 2D FFT of Ey around the cavity between 22.7 and
25.7 km (left panel) and in the magnetised region (right panel),
from 0 to 0.005 s in time. The diagram shows aliased typical
dispersion for light waves and plasma waves, preferentially prop-
agating to the right. As Maxwell’s equations are solved using a
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finite difference time domain, the dispersion relation for waves
is modified, mainly at large wave numbers k. For instance, the
wave dispersion relation for modified light waves (ω2 = c2k2)
becomes:

sin2
(
ω∆t

2

)
=

c2∆t2

∆x2 sin2
(

k∆x
2

)
, (14)

and for plasma waves (ω2 = ω2
pe + c2k2) becomes:

sin2
(
ω∆t

2

)
=
ω2

pe∆t2

4
+

c2∆t2

∆x2 sin2
(

k∆x
2

)
. (15)

In addition, they are aliased. The sampling rate of the
fields is 100∆t and thus the range of ω∆t covered here is
[−π/100; π/100]. The numerically modified wave dispersion
becomes:

ω∆t ≡ ±2 arcsin


√
ω2

pe∆t2

4
+

c2∆t2

∆x2 sin2
(

k∆x
2

)
(
mod

2π
100

)
.

(16)

Similarly, the same relation can be used for light waves by setting
ωpe = 0.

Plasma waves appear and seem likely trapped: they strug-
gle to propagate through the magnetised region and are unlikely
to propagate towards the left as the plasma density and ωpe
are higher. Indeed, as there is a gradient in the plasma den-
sity, the plasma frequency decreases as x increases. On the right
side of the boundary, within the magnetised part, the perturba-
tions are associated with the electron cyclotron frequency and
the dispersion relation diagram (Fig. 3, right panel) reveals the
presence of electron Bernstein waves. We remind the reader
that the wave analysis is limited to the electrons here. Although
quantities are recorded every 100 time-steps, the plasma fre-
quency is not uniform and decreases for increasing x such that
the highest frequency resolved near the cavity (where it is ni ≈

0.15n0) is around the plasma frequency. Indeed, although the
plasma frequency decreases along x, the ‘perceived’ plasma fre-
quency oscillates between zero and the sampling rate through the
simulation box.

Finally, regarding E2
z as seen in Fig. 2 (bottom panel), noth-

ing noticeable appears except for the propagation of light waves
at the beginning of the simulation. Due to the symmetry of the
simulation,

∂t(ε0E2
z + B2

y/µ0) = −2JzEz + 2ε0c2∂xEzBy, (17)

where Ez and By are expected to be zero or very small.
Figure 4 shows the energy density stored in the different

components of the magnetic field, B2
y and B2

z , with Bx being
null. Like E2

z , the diagram of B2
y (top panel) shows the pres-

ence of light waves during the first few milliseconds of the
run. However, unlike E2

y , the fluctuations of B2
y are larger in the

unmagnetised region than in the magnetised region dominated
by a z-component. In the bottom panel, B2

z evolves slowly though
time and does not fluctuate. It is the only electromagnetic field
initialised to a non-zero value with a spatial profile. However, a
slight and weak increase in the field emerges from 0.025 to 0.03 s
and moves away from the cavity (see inset in Fig. 4). Its origin
will be tentatively addressed in Sect. 3.3.

Fig. 4. Colour plot (position vs. time) of the energy stored in the differ-
ent magnetic field components. Due to the symmetry, Bx is null. As an
indication, lines with squares represent the propagation of structures at
different speeds. The inset is a zoom of the red box along the boundary.
The colour bar is in logscale and SMILEI units (here n0mec2). Figure 2
provides further details of the labels.

3.2. Thermodynamics quantities

Figure 5 shows the xx component of the dynamic and thermal
pressures tensors of ions and electrons, that is to say,

Ps,dyn = nsmsV s ⊗ V s

Ps,th =

∫
(u − V s)(u − V s)T fs(r, u, t) d3u. (18)

The ion dynamic pressure in the magnetised and unmag-
netised regions (top left panel) increases because of the ion
acceleration by the ambipolar electric field. As the initial ion
speed (10−4c) is below the ion acoustic speed (10−3c), ions are
accelerated up to 2 × 10−4c at the end of the simulation. At
the DCBL, we observe an increase in the ion dynamic pressure
induced by ions going backward (Vi,x < 0). Indeed, because of
the steep increase in Bz, ions are repelled by the magnetic barrier
and accelerated by the Hall term in Ohm’s law. At the beginning
of the simulation, if we apply Ohm’s law for the x component of
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Fig. 5. Position vs. time of the xx component of the dynamic (Ps,dyn,xx, top panel) and thermal (Ps,th,xx, bottom panel) pressures, ions (left panel),
and electrons (right).

the electric field, we find:

Ex(x, 0) ≈ −
1

qne
∂x

(
Pe,xx(x, 0) +

B2
z (x, 0)
2µ0

)
≈

kBTe

qHn
−
∂xB2

z (x, 0)
2qneµ0

.

(19)

The Hall term generates a strong electric field leftwards,
locally overcoming the ambipolar field at the DCBL. This field
prevents ions from penetrating too far into the magnetised region
while electrons cannot because of their lower momentum (i.e.
meVe,x < miVi,x) and lower gyroradius. In addition, there are two
positions where the electric field is zero, one on each side of the
layer, with one being the minimum of the electric potential and
the other its maximum (see Fig. 7 for the electric potential and
the associated discussion in Sect. 3.3).

The minimum of the electric potential being in the unmag-
netised part is a stagnation point where ions accumulate: they
cannot propagate back to the left because of the ambipolar
field and cannot propagate to the right because of the steep
increase in magnetic pressure. The ion dynamic pressure along

x in this simulation is probably the clearest tracer of the evo-
lution of the DCBL. As expected, the ion thermal pressure
(bottom left panel) is much lower than the dynamic pressure,
though ion heating is observed on each side. This is the oppo-
site for the electron pressure and thermal pressure (bottom
right panel). Far from the DCBL, the electron dynamic pres-
sure does not vary through time and follows the initial value
given by Pe,xx = 0.01 exp(−x/Hn)[n0mec2] between 10−2n0mec2

(x = 0) and 10−4n0mec2 (x = Lbox). In the DCBL, the electron
dynamic pressure changes: it increases on the left flank whereas
it decreases on the right flank. These variations are associated
with variations in both number density and temperature.

Figure 6 shows the electron temperature component along x
as well as the electron number density. We see that the electron
pressure gradient is driven by both gradients, that is, in tem-
perature and number density. The depletion of electrons on the
magnetised side (down 20% between ∼245 km and ∼285 km)
equates to the accumulation of electrons on the unmagnetised
side (up to +80% between ∼233 km and ∼245 km) such that
the number of electrons is conserved within the DCBL over
time. These variations are coincident with those of the electron
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Fig. 6. Electron number density (blue) and temperature along the x com-
ponent (red) as a function of position at t = 0.027 s. Initial values are
represented by the black dashed lines. The initial position of the DCBL
where Bz = 0.5B0 is indicated by the vertical dashed line.

temperature along x: the electron temperature increases by 50%
below 245 km while it decreases by 20% above 245 km. It is
interesting to note that, in a collisionless simulation, electrons
can be both heated and above-all cooled down in the absence of
collisions.

3.3. Electron dynamics

One of the benefits of an explicit PIC code is its ability to
resolve and grasp physics down to the electron scale, spatial and
temporal alike. As mentioned above, different models explore
different scales, relying on some assumptions as to the scales
they cannot resolve, which could make comparisons between
models and their respective results difficult. However, a disad-
vantage of our simulations is that spatial and temporal averages
are required, in particular for the electric field, because of the
numerical noise, in part due to the representation of ions and
electrons by macroparticles. In addition, one must keep in mind
that, because of the electron number density gradient, the plasma
characteristics of the plasma (electron Debye length and plasma
frequency) are differently resolved through the simulation box.
As an example we consider two locations, one around x ≈ 0
and the other around the DCBL at x ≈ Lbox/2. On the one
hand, at x ≈ 0, ne ≈ n0 which means that ∆x/Le,De(0) ≈ 0.9
and ωpe(0)∆t = 0.081. On the other, around x ≈ Lbox/2, ne ≈

n0 exp(−2) which means that ∆x/Le,De(Lbox/2) ≈ 0.9 exp(−1) ≈
0.33 and ωpe(0)∆t = 0.03.

In this simulation, we explore the equilibrium at play on the
electrons regarding the momentum equation which is along x:

me∂t(

−
Je

q︷︸︸︷
neVe,x) = − ∂x(

Pe,dyn,xx︷    ︸︸    ︷
meneV2

e,x) − ∂xPe,th,xx

−qneEx + Je,yBz − Je,zBy︸                          ︷︷                          ︸
Lorentz force

+residuals, (20)

where the residuals are fluctuations associated with numerical
effects which are hard to quantify precisely. Figure 7 shows the
balance of the different forces at play on the electrons, namely
the electron thermal pressure gradient, the electric and the mag-
netic forces acting upon electrons (the electron dynamic pressure
is ignored), and the associated changes of ne and Bz. The quan-
tities shown have been smoothed temporally and spatially as
follows. We performed a spatial moving average over 21 points,
specifically [x0 −10∆x, x0 −9∆x, ..., x0 +10∆x]. The subset must
not be too large as in this case the sharp structure would be flat-
tened or even disappear. Here, 20 ∆x corresponds roughly to
three to four electron Debye lengths at the DCBL. We performed
a temporal average over the time interval [t0; t0 + 10 000∆t] with
one sample every 100 ∆t.

The top left panel of Fig. 7 represents the initial equilibrium
of our system on the electrons. We ignore the electron dynamic
pressure gradient as it is negligible with respect to other dis-
played quantities. On each side of the layer, the electric field
is balanced by the electron thermal pressure gradient (qneEx ≈

−∂xPe,th,xx) and is therefore ambipolar in nature. The problem
is that this field is very weak as −∂xPe,th,xx ≈ ne(kBTe/qHn) ≈
1.36 × 10−5ne. At the boundary, the electric field is balanced
by the Je × Bz field. This is responsible for the huge drop in
the electric potential by almost 0.04 mec2, which is four times
higher than the initial thermal energy of the electrons. As the
electric potential is defined up to a constant, we set max(−qΦ) =
0.01 mec2. The reader must not be mislead by the potential
electric field profile: although it decreases through the DCBL,
electrons cannot move into the magnetised part as the magnetic
field induces an effective potential barrier. Around 9 ms (top
right panel), the electric field separates into two structures, each
one moving in opposite direction. The ambipolar field increases
following the change in the electron number density. Electrons
cumulate on the left side, stopped by the magnetic barrier. The
ambipolar field builds up in order to limit the accumulation of
electrons. In addition, the electron thermal pressure gradient
changes sign approximately where ne is maximal. The sum of
these three forces remains close to zero meaning that Ohm’s law
is valid at the scale we are looking at. At around 18 ms (bottom
left panel), the DCBL splits into three distinctive regions with
different equilibria. Around 240 km, the electric field is purely
ambipolar (qneEx + ∂xPe,th,xx ≈ 0). The electric field is associ-
ated with a steep drop of −qϕ ∼ kBTe, which falls within the
definition of a double layer (Block 1978) as electrons stagnate
and accumulate at the foot of the magnetic barrier. Further to the
right, the electric field is approximately zero with a flat electric
potential, meaning that ∂xPe,th,xx ≈ Je,yBz. The electron current
is therefore diamagnetic in nature. Within this region:

Pe,th,xx +
B2

z

2µ0
∼ constant, (21)

which corresponds to the balance at the ionopause (Cravens
1986). Finally, −qϕ drops again with a smoother slope associated
with the increase in the magnetic field. Here, the electric field is
dominated by the Hall term (qneEx ≈ Je,yBz), meaning that ions
and electrons are decoupled, and the slope is advected with the
electrons at Ve,x. In this region, we have Jy,i ≈ −(me/mi)Jy,e.

More interestingly, although the electric field associated with
the electron pressure gradient moves away, dissociating itself
from the magnetic wall, a little bump in the magnetic field forms
at the same exact location (cf. bottom right panel for t ≈ 27 ms).
Between the magnetic bump and the magnetic wall, electrons
are trapped even if they are heated. At the bump, the electric
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a) b)

c) d)

Fig. 7. Evolution over time of the electron number density and magnetic field along z (upper panel) as well as the different forces acting on the
electrons: electric field, electron pressure gradient, and x component of the (Je × B) force. The electric potential Φ is also displayed and values
should be read with respect to the right y-axis. An animated version is available online.

potential prevents electrons <0.01 eV from moving leftwards.
The magnetic bump increases this barrier by a few 0.001 eVs
preventing heated electrons above 0.01 eV seen in Fig. 6 from
escaping. On the right side, electrons are stopped by the mag-
netic field only.

Figure 8 shows the pressure profiles and combinations of
them at the DCBL for t = 27.24 ms. Except for electromagnetic
pressures, the total (dynamic plus thermal) pressures of the ions
and electrons exhibit a steep increase at the location of the mag-
netic ‘bump’ and the electric field peak (see inset) ahead of the
magnetic barrier where E2 > c2B2. From this bump at ∼235 km
and up to ∼257 km, Pe,xx + B2

z/(2µ0) ≈ constant even in the
almost unmagnetised region where hotter electrons are found.
This suggests that electrons and ions are ‘feeling’ the bound-
ary as the flow is subsonic in the diamagnetic cavity. Even if
steady state is not reached, such steepness in the ion and electron

pressure spanning over 20–30 grid cells (about ten local Debye
lengths and of the order of the electron skin depth) might suggest
that both regions are almost disconnected, and particles cannot
pass through. If the steady state is reached, and in the absence of
collisions, sources, and losses, the pressures must obey:

d
dx

(
Pi,dyn,xx + Pe,dyn,xx + Pi,th,xx + Pe,th,xx −

ε0E2
x

2
+

B2
z

2µ0

)
= 0,

(22)

as derived from the conservation form of the momentum equa-
tion for both species. This form allows the derivation of jump
conditions at collisionless shocks when particles cross the
surface, bridging their properties upstream and downstream
(Rankine-Hugoniot relations). However, even if not applicable
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Fig. 8. Pressure profiles at the DCBL. Ps,xx represents the xx compo-
nent of the total pressure (dynamic plus thermal) for each species at
t = 27.24 ms. The inset shows a zoom in to the foot of the ramp.

here because of non-stationarity, it should be remembered that
such an equation holds only if all particles pass through the spe-
cific surface, meaning that the equation may hold on each side of
the shock but not necessarily at the shock itself, if impermeable.
Indeed, the ion pressure is mainly dynamic and drops to zero
(Pi,xx, see inset) as the ion current (not shown) is zero going from
positive values inside the cavity to negative ones (∂xns Vs,x < 0
and therefore ∂t ns > 0). As the simulation neither starts at nor
reaches a steady state, ions initially starting where the magnetic
field increases were not trapped. Instead, they are quickly pushed
away towards the cavity boundary, accelerated by the Hall term
present at the beginning of the simulation because their initial
kinetic energy is too small (10−4 mec2 at the start of the sim-
ulation). This causes the negative ion current along x within
the DCBL. Similarly, another point is also present further away
around 280 km where the ion current goes from negative to pos-
itive. However, it is not a stagnation point as ∂x nsVx,s > 0 and
therefore ∂t ns < 0.

The last properties we investigate are the adiabaticity and
gyrotropy of the electrons at the DCBL. Figure 9 shows the diag-
onal components of the electron thermal pressure tensor as a
function of the electron number density. Such a plot allows us
to visualise whether or not electrons are adiabatic. The profiles
exhibit different slopes through the DCBL. For Pe,th,xx, as we
move with increasing x (or from higher to lower electron den-
sities), assuming Pe,th,xx ∝ nα, we obtain, in succession: α ≈ 1,
1.46 (between blue and red points), 0.5 (between red and yellow
points), 1.8 (between yellow and green points), 4.85 (between
green and cyan points), and again 1. None of these values appear
to be close to the common ones for adiabatic indexes (e.g.
5/3). However, our plasma is not realistic, as ions and electrons
are represented by macroparticles. In addition, our simulation
is 1D3V and there is no evidence that it does not affect the
index. Adiabatic indexes are directly related to the degrees of
freedom, which are limited in space to one dimension. Never-
theless, the profiles are evidence that non-adiabatic heating and
cooling might occur at the DCBL, in particular where Ex ≈ 0
and the current is diamagnetic (between red and green points).

Fig. 9. Smoothed diagonal components of the electron thermal pressure
tensor as a function of the electron number density at the DCBL in
logscale, at t = 27.24 ms. Pe,th,yy and Pe,th,zz have been purposely scaled
so that they do not to overlap with Pe,th,xx. Five inflexion points (blue,
red, yellow, green, and cyan) have been identified, plus one (violet) for
a later purpose. Their locations within the DCBL are indicated within
the inset where Bz is plotted as a function of x.

Therefore, the electron thermal tensor has to be resolved. Fur-
thermore, Pe,th,xx and Pe,th,yy, both components perpendicular
to the local magnetic field, behave differently between the blue
and yellow locations, around the low magnetised region of the
DCBL. Non-diagonal terms of Pe have been ignored as their
values are below 10−5, two orders of magnitude lower than
those on the diagonal. In this thin, weakly magnetised region,
both temperatures are different and the reason for this remains
unknown.

3.4. Electron distribution function

Figure 10 shows the electron velocity distribution function
(EVDF) at several locations of the DCBL for four distinctive
times. At the beginning of the simulation, the EVDF is homo-
geneous and Maxwellian through the DCBL. After a few tens of
milliseconds, an electron beam forms at the foot of the magnetic
ramp, deforming the initially isotropic VDF, and then propagates
towards the unmagnetised region and the bottom of the magnetic
ramp (red point). Its onset is seen in the yellow panel (upper
right) at 9.08 ms and 19.16 ms and then passes through the red
point (upper middle panel) around 27.24 ms. The most interest-
ing feature is the EVDF at 27.24 ms in the upper middle panel
(red axis frame). This is located between the double layer (to the
left of the second circle) and the magnetic ramp itself. Electrons
are trapped here by the electric potential on their left and the
magnetic ramp on their right but this region remains unmagne-
tised. The EVDF is highly anisotropic and not even gyrotropic.
The EVDF is relatively flat along vx. In addition, the distribution
function is more likely noisier in the unmagnetised region. As
we averaged over a few time steps, in the magnetised region, the
EVDF rotates in a plane that is perpendicular to the magnetic
field, smoothing the initial irregularities.
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a) b)

c) d)

Fig. 10. Evolution over time of the EVDF (the colour scale is in arbitrary units and therefore not indicated) in the plane perpendicular to the
magnetic field in several locations through the DCBL; same as Fig. 9 but for different times. For each panel, the two top rows are EVDFs which
have been sampled between −0.2c and 0.2c every 0.004c. No scales are provided as the purpose is only qualitative. Axis frames are of the same
colour as markers indicating a specific location given in the bottom row overlayed on the magnetic field plot. Velocities (x and y axes of EVDFs)
are given in terms of c. We performed a temporal average over the time interval [t0; t0 + 10 000∆t] with one sample every 100 ∆t. An animated
version is available online.

Figure 11 shows normalised phase plots along x for vx and vy
components at t = 27.24 ms. The magnetic field has been replot-
ted for visualisation purposes. We normalised distributions with
respect to the maximum value at a given x to highlight changes
in the temperature for example. The double layer is noticeable in
the x vs vx panel with a steep increase in the temperature along x.
This is also associated with a negative speed along x for the ions:
ions are blocked and reflected by the electric potential of the dou-
ble layer. Simultaneously, at the double layer, the ion velocity
along y stops decreasing and increases again. Nothing appears in
the second panel up to this point.

Between the double layer and the yellow point, the magnetic
field goes from a plateau around zero and increases to a first step

around 240 km. In this region, the phase space x− vy evolves: the
electron velocity along y increases to sustain the magnetic field
gradient. Interestingly, the y component of ions increases and
becomes positive although weakly compared with that of elec-
trons. This might be caused by ions falling from the magnetic
ramp, pushed away by the Hall term, going towards negative
x and starting to gyrate clockwise such that they are acceler-
ated towards positive y. In this simulation, ions do not have
time to perform a full gyration. As the magnetic field is around
0.1 in SMILEI units, this means that ωce = 0.1ωpe and there-
fore ωci = 10−5ωpe. A gyroperiod for an ion is Tci = 2π/ωci =

2 × 105π/ωpe ≈ 350 ms. The transition between the two mag-
netic ramps is seen in both plots, with less noisy distributions.
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Fig. 11. Normalised phase-space plots vx vs. x (top panel) and vy vs.
x (middle panel) for electrons at t = 27.24 ms in arbitrary units. The
figure can be animated online.

There is a clear change in x − vy phase space plot. Between the
yellow and green dots, both phase-space plots clearly exhibit a
decreasing spread in velocity and confirm the electron cooling
up to the green dot, before the last magnetic ramp where the Hall
term dominates the electric field. Here, the electron temperature
increases again to initial values.

4. Discussion

4.1. The electric field and its reliability

Away from the sharp increase in the magnetic field and within
the major part of the simulation box, the electric field is ambipo-
lar. It is not clear from the figures whether the electric field is
very small or drowned within the fluctuations. This effect is due
to the coarse-graining of the simulation, that is, space discretisa-
tion, and the relatively low number of particles used to simulate
the plasma, which is not able to contain all of the noise. In real
plasmas, the fluctuations of the electric field energy from ‘two-
particle’ correlations are given by (e.g. Krall & Trivelpiece 1973;
Callen 2006):

ε =
< ϵ0E2

0 >

nkBT
∼

1
Λ
, (23)

where Λ is the plasma parameter. Fluctuations of the electric
field arise from the finite number of particles within a Debye
sphere: these are increasingly damped as the plasma parame-
ter increases. Close to the nucleus, the Debye length is of the
order of 1 m or less and the plasma number density is typically
between 100 and 1000 m−3, such that Λ ≥ 108.

In our simulation, the ambipolar electric field is given by

Eamb = −
∇ · Pe

qne
≈

kBTe

qHp
ex, (24)

where Hp stands for the plasma density scale height. It is then
relevant to compare the fluctuations with the mean electric field

so that:

< E2 >

< E >2 ≈ ε
H2

p

λ2
e,De

. (25)

Observations and theoretical works have shown that Hp ≈ r
near the nucleus, with r being the distance from the cometary
nucleus (e.g. Balsiger et al. 1986; Edberg et al. 2015; Beth et al.
2019). Therefore, the fluctuations of the electric field are of the
order of or lower than the mean electric field where the ambipo-
lar field is the main contribution. The ‘two-particle’ correlations
described above are not included in Vlasov theory (Krall &
Trivelpiece 1973) and by consequence are not in PIC models
either. Nevertheless, the limited number of macro-particles per
grid cell in a PIC simulation induces fluctuations that are larger
than in real plasma (Melzani et al. 2014). In addition, reducing
the electron temperature and therefore the Debye length may
aggravate the problem, as shown by Eq. (25). Only substantially
increasing the number of particles (from tenfold to hundredfold)
may efficiently reduce numerical fluctuations. Another strategy
would be using implicit PIC codes such as iPIC3D instead of the
explicit SMILEI. Indeed, as mentioned in Markidis et al. (2010),
the fast transverse motion of the electrons is damped, which
may be seen as a Darwin-like approximation (i.e. neglecting the
time derivative of the transverse component of the electric field)
though it is not clear how this would work in the unmagnetised
part.

Finally, there is one last issue to raise concerning the electric
field. As shown by our simulations, the change of the electric
potential fulfils the definition of a double layer (ϕ ≳ kBTe). Block
(1978) showed that the typical width of the double layer is at least
of the order of

√
mi/meλD which is consistent with our simula-

tions. The electric potential drops over a typical spatial scale of
100–200 electron Debye lengths while theory predicts 100 elec-
tron Debye lengths (our ion-to-electron mass ratio is 10 000).
This result will be important for any future attempt to model this
transition region with other approaches or codes. In PIC sim-
ulations, it is common to reduce the ion-to-electron mass ratio
(see Deca et al. 2017, 2019; Divin et al. 2020, who use a realistic
proton mass and an increased electron mass) which might pre-
vent the accurate modelling of this structure. In addition, not all
PIC simulations have to resolve the Debye length, only explicit
PIC simulations. If the spatial grid is too large (considered as an
advantage of the implicit PIC approach over explicit PIC ones)
or a spatial average includes too many cells, the double-layer
structure may not be resolved as well.

4.2. Agyrotropy and non-adiabaticity of the electrons

As mentioned in Sect. 3.3, electrons are not adiabatic. Under-
standing the reasons for this would require investigating the
electron entropy. Unfortunately, the latter is not currently part
of the diagnostic available in SMILEI. Nevertheless, there are
already some hints regarding the role of electron adiabaticity
on the DCBL. In Koenders (2015), two simulations were car-
ried out: one assuming an adiabatic equation of state for the
electrons, the other solving the electron pressure equation. Even
if these simulations are hybrid (and thus electrons are consid-
ered as a massless fluid), solving the electron pressure adds a
second-order correction to the distribution function. The sim-
ulations exhibit high discrepancies in the region between the
bow shock and the DCBL. In particular, in the adiabatic simu-
lation, the electron temperature monotonically decreases as we
go from the solar wind to the DCBL. However, in the non-
adiabatic case, electrons are heated with higher temperatures
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by one to two orders of magnitude compared with the ‘adia-
batic’ simulation. This may critically affect the plasma density:
electron-ion dissociative recombination plays an important role
in terms of loss. Its efficiency depends on the electron tem-
perature. The lower the electron temperature, the higher the
plasma loss. Koenders (2015) also showed that the size of the
diamagnetic cavity reduces in the non-adiabatic case.

With PIC simulations, we have the ability to verify and check
if any assumptions and closures made regarding the electron
behaviour at small scales are a posteriori true. Even if our sim-
ulations do not incorporate all the required physics to properly
model the ionised cometary environment, these first results pro-
vide valuable hints. The first closure relation used in MHD and
hybrid simulations is the generalised Ohm’s law. By assuming
strict neutrality of the plasma and in the low-frequency limit,
the electric field cannot be solved from Maxwell’s equations.
Instead, the electrons are assumed massless, without inertia,
instantaneously adapting to the ambient electromagnetic fields.
Such a formulation seems to hold here once quantities are aver-
aged over time and space, still at small spatial scales such as a
few electron inertial lengths. This was suggested by Deca et al.
(2019). However, within Ohm’s law, another approximation is
made: the electron pressure tensor. It can be assumed either
isotropic, that is to say,

Pe = ne kB Te I3, (26)

or gyrotropic

Pe = ne kB

[
Te∥bbT + Te⊥(I − bbT)

]
, (27)

where one of the eigenvectors of Pe is along the local magnetic
field and eigenvalues associated with the perpendicular direc-
tions are equal. The latter means that the shape of the distribution
function can be seen as a prolate or oblate spheroid along the
local magnetic field direction in velocity space, centred on the
electron mean velocity. Our results show that the electron distri-
bution is not isotropic but also not perfectly gyrotropic near the
DCBL, although the eigenvectors of Pe are along the x, y and z
axes.

Figure 12 shows the different electron temperatures and
‘invariants’ described in Appendix A which highlights the
anisotropy of the electron distribution function. The so-called
invariants are values derived from the analysis of the character-
istic polynomial of Pe. They are called invariants because they
do not depend on the frame in which Pe is represented. If the
three temperatures of the electron distribution function are dis-
tinct, the discriminant ∆ is positive (see Appendix A). If two of
them are equal and distinct from the third temperature, ∆ = 0 but
−p3 > 0. If all temperatures are equal p3 = q2 = ∆ = 0.

As electron anisotropies develop at the DCBL, we check
for two possible instabilities: mirror and firehose (see e.g.
Rosenbluth 1956; Chandrasekhar et al. 1958; Rudakov &
Sagdeev 1958). Firehose instabilities would occur in regions
where P⊥ − P∥ > B2

z/µ0. Even if we have a small region where
P⊥ − P∥ > 0, the difference is not large enough to overcome
B2

z/µ0 and trigger the instability in our simulation where our
magnetic field strength is very large compared with reality. How-
ever, in the weakly magnetised region, where both perpendicular
temperatures are larger than the parallel temperature, the insta-
bility condition for mirror mode generation may be fulfilled.
Either assuming T⊥ = Pe,th,xx/ne or Pe,th,yy/ne, the condition

2nekBT⊥

(
T⊥
T∥
− 1

)
>

B2

µ0
, (28)

Fig. 12. Profiles of the invariants of Pe/ne described in Appendix A
(upper panel) and of the different electron temperatures. As the non-
diagonal terms of Pe/ne have values of close to zero, the eigenvalues of
Pe/ne are its diagonal terms. The vertical black line delimits the region
where the mirror instability might occur (on the left side) as the mag-
netic field strength is low.

holds for x ≲ 241 km. We might also include the ions but
their temperature is negligible compared to that of the electrons.
Nevertheless, these criteria were derived for bi-Maxwellian
distributions. In contrast, EVDFs exhibit structures far from
Maxwellian or bi-Maxwellian distributions characterised, some-
times, by three different temperatures (cf. Fig. 10, top middle
panel at 27.27 ms). Previous works investigated the stability of
this region at 1P/Halley. In particular, Ershkovich et al. (1989)
performed a stability analysis of both ionospheric structures and
balances proposed by Cravens (1986) and Ip & Axford (1987).
The latter were shown to be unstable. However, taking mass
loading (e.g. photoionisation) and unloading (e.g. dissociative
recombination) effects into account helps to stabilise the system,
except near the boundary.

4.3. Are any of these plasma characteristics observable with
past and future cometary missions?

Definitely one of the most important questions to address is
whether or not any of these plasma characteristics are observ-
able with past and future cometary missions. As we show in
our simulation, several features are associated with the DCBL.
Firstly, we show that a double layer forms near the DCBL with a
drop in the electric potential of the order of the electron tempera-
ture. This structure is actually too sharp (less than one kilometre
and even smaller in reality) to be probed by Rosetta or Comet
Interceptor, as electric fields are quite difficult to measure in
general. Secondly, we observed a clear evolution of the elec-
tron distribution through the boundary. Evidence for a difference
in the electron distribution function between inside and outside
the diamagnetic cavity was found at 67P (Nemeth et al. 2016).
However, one has to keep in mind that these observations of the
electron distribution function are limited by several factors: the
time resolution of the instrument, the relative speed of the space-
craft, and the spacecraft potential for instance. At this stage, it is
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difficult to know if probing the EVDF with great spatial and tem-
poral resolution would be possible with the future ESA mission
Comet Interceptor. However, it appears critical that in order to
probe these structures in the future, we need multi-point mea-
surements and orbiting spacecraft for an extended period of time
as suggested by Goetz et al. (2021).

5. Conclusions

In this paper, we present the first fully kinetic PIC simulation of
the so-called DCBL that encases the diamagnetic cavity, in the
collisionless limit. Although the initial setup cannot be close to
reality as some aspects regarding cometary physics have been
ignored, simulations provide valuable insights into this structure
and the role of the electrons. In particular, in this paper, we focus
on the evolution over time of the electromagnetic fields and ther-
modynamic quantities associated with the electrons and ions as
well as the pressure balance at the DCBL. In addition, we investi-
gated the time and spatial dependence of the electron distribution
function across the DCBL.

Among the features observed in our PIC simulation, several
are of great interest and therefore must be considered and inves-
tigated in detail in the future. Firstly, a double layer forms at the
DCBL and propagates towards the unmagnetised region. This is
of major importance as such a structure may be revealed only
through fully kinetic modelling. Secondly, within the DCBL,
electrons do not have a Maxwellian distribution and depart from
a gyrotropic distribution. In addition, their behaviour does not
seem adiabatic, in contrast with assumptions made for MHD
and hybrid models. For a better understanding and more accu-
rate modelling of the DCBL, we are planing to perform 2D3V
simulations.
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Appendix A: Anisotropy in the electron
distribution function

One of the strengths of PIC simulations resides in the abil-
ity to assess the moments of the ion and electron distributions
compared with MHD and hybrid simulations. In particular,
the second-order moment of the electron pressure tensor is of
interest. The commonality between MHD and hybrid is the
assumption that the electron pressure tensor is diagonal in the
frame of the local magnetic field, with two temperatures, one
parallel to the magnetic field and one perpendicular, that is, Pe
is given by:

Pe = nekB

[
Te∥bbT + Te⊥(I − bbT)

]
. (A.1)

Hence, the distribution function might be perceived as an
ellipsoid prolate or oblate along B centred on the mean elec-
tron velocity (first-order moment). In order to compare results
from PIC, hybrid, and MHD simulations, we consider Pe to be
a good starting point: it is the highest order modelled by hybrid
and MHD models. Pe is a symmetric matrix such that its eigen-
values are positive and its eigenvectors are orthogonal to each
other. Therefore, Pe may be written as follows:

Pe = nekB

[
Te1V1V1

T + Te2V2V2
T + Te3V3V3

T
]
, (A.2)

where V j stands for the normalised eigenvectors associated to
the temperature Te j.

In order to assess whether or not the distribution function
is isotropic, gyrotropic, or anisotropic, the pressure tensor and
its invariants should be scrutinised. The invariants of the pres-
sure tensor are independent of the frame in which the pressure
is represented. For instance, the eigenvalues are invariants of Pe.
Moreover, there exists different sets of three invariants. One of
the common sets is:

I1 = tr(Pe) (A.3)

I2 =
1
2

[
tr(Pe)2 − tr(Pe

2)
]

(A.4)

I3 = det(Pe), (A.5)

such that the eigenvalues are solutions of the polynomial equa-
tion:

λ3 − I1λ
2 + I2λ − I3 = 0.

As Pe is a symmetric tensor, all λi are real. In addition, because
of the way the different components of Pe are calculated (see
Eq. 18), the eigenvalues are positive. Indeed, it can be shown
that ∀i, j, Pi,iP j, j ≥ P2

i, j (Cauchy-Schwarz inequality) such that
I1, I2, and I3 are positive. Using Descartes’ rule, it follows
that the polynomial should have three positive roots. Divid-
ing λi by the local electron density gives the three different
temperatures of the distribution function. Three different cases
exist: one single root (multiplicity 3; isotropic distribution), two
distinct roots (one with multiplicity 2, the second with multi-
plicity 1; e.g. gyrotropic distribution), and three distinct roots
(anisotropic distribution). The number of positive roots depends
on the discriminant ∆ from Cardano’s method, given by :

∆ = −p3 − q2 = (λ1 − λ2)2(λ2 − λ3)2(λ3 − λ1)2 (A.6)

p = −
I2
1

9
+

I2

3
(A.7)

q = −
I1

54

(
2I2

1 − 9I2

)
−

I3

2
. (A.8)

As the roots are real, ∆ ≥ 0. If ∆ = 0, only two roots exist.
In addition, if p = q = 0, there is one single root (isotropic dis-
tribution). p has a mathematical meaning: −2p is the variance
of eigenvalues (p < 0); it allows to track any departure of a
distribution function from the isotropic case.
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